Leave blank

A particle of mass $0.3\,\mathrm{kg}$ is moving with velocity $(5\mathbf{i}+3\mathbf{j})\,\mathrm{m\,s^{-1}}$ when it receives an impulse $(-3\mathbf{i}+3\mathbf{j})\,\mathrm{N}$ s. Find the change in the kinetic energy of the particle due to the

impulse.

:
$$3v = \begin{pmatrix} -15 \\ 39 \end{pmatrix}$$
 : $v = \begin{pmatrix} -5 \\ 13 \end{pmatrix} \Rightarrow Speed = \sqrt{194}$

final KE =
$$\frac{1}{2}(0.3)(\sqrt{194})^2 = 29.1$$

Imital KE = $\frac{1}{2}(0.3)(\sqrt{34})^2 = 5.1$

2. At time t seconds, $t \ge 0$, a particle P has velocity v m s⁻¹, where

$$\mathbf{v} = (27 - 3t^2)\mathbf{i} + (8 - t^3)\mathbf{j}$$

When t = 1, the particle P is at the point with position vector \mathbf{r} m relative to a fixed origin O, where $\mathbf{r} = -5\mathbf{i} + 2\mathbf{j}$

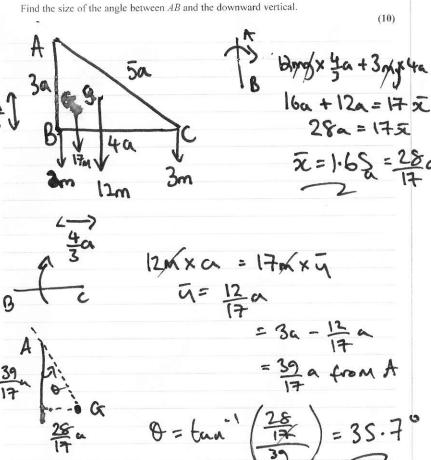
Find

(a) the magnitude of the acceleration of P at the instant when it is moving in the direction of the vector i.

(5)

(b) the position vector of P at the instant when t = 3

(a)
$$V = (27-3+2)i+(8-1); = (27-3+2)$$


$$a = \frac{dv}{at} = \begin{pmatrix} -6t \\ -3t^2 \end{pmatrix}$$

moving parallel to i when j component = 0 $8-t^3=0 \Rightarrow t=2 = \alpha = \begin{pmatrix} -12 \\ -12 \end{pmatrix}$ $|\alpha|=17.0$ mi

$$S = \begin{pmatrix} 27t-t^3-31 \\ 8t-t+4-5.75 \end{pmatrix}$$
 $t=3$ $S = \begin{pmatrix} 23 \\ -2 \end{pmatrix}$

3. A thin uniform wire of mass 12m is bent to form a right-angled triangle ABC. The lengths of the sides AB, BC and AC are 3a, 4a and 5a respectively. A particle of mass 2m is attached to the triangle at B and a particle of mass 3m is attached to the triangle at C. The bent wire and the two particles form the system S.

The system S is freely suspended from A and hangs in equilibrium.

A particle P of mass 6.5 kg is projected up a fixed rough plane with initial speed 6 m s⁻¹ from a point X on the plane, as shown in Figure 1. The particle moves up the plane along the line of greatest slope through X and comes to instantaneous rest at the point Y, where XY = d metres. The plane is inclined at an angle θ to the horizontal, where $\tan \theta = \frac{5}{12}$.

Leave blank

(00 Q=12

(7)

(4)

(a) Use the work-energy principle to show that, to 2 significant figures, d = 2.7

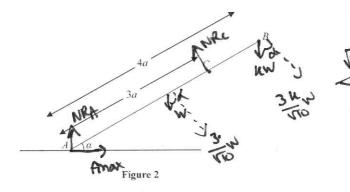
After coming to rest at Y, the particle P slides back down the plane.

(b) Find the speed of P as it passes through X.

The coefficient of friction between P and the plane is $\frac{1}{2}$.

4.

$$\frac{1}{2}(6.5)6^{2} - 29d = 6.59 \times d \frac{5}{13}$$


$$117 = \frac{1}{2}9d \quad \therefore d = \frac{234}{99} = 2.65322.$$

$$\frac{1}{2}(sm)(va)^{2} = \frac{72}{243}mu^{2} \Rightarrow (vc1)^{2} = \frac{144}{1225}u^{2} \Rightarrow vc2 = \frac{12}{35}u$$

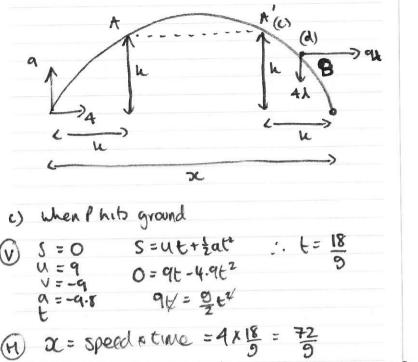
$$CLM \Rightarrow 4m(4u) = 4m V82 + Sn/x \frac{12}{35}u$$

$$= \frac{12}{35} \times \frac{16}{35} \times \frac{12}{35} \times \frac{$$

6.

A uniform rod AB has length 4a and weight W. A particle of weight kW, k < 1, is attached to the rod at B. The rod rests in equilibrium against a fixed smooth horizontal peg. The end A of the rod is on rough horizontal ground, as shown in Figure 2. The rod rests on the peg at C, where AC = 3a, and makes an angle a with the ground, where $\tan \alpha = \frac{1}{3}$. The peg is perpendicular to the vertical plane containing AB.

- (a) Give a reason why the force acting on the rod at \mathcal{C} is perpendicular to the rod.
- (b) Show that the magnitude of the force acting on the rod at C is


$$\frac{\sqrt{10}}{5}W(1+2k)$$

(4)

(1)

The coefficient of friction between the rod and the ground is $\frac{3}{4}$.

- (c) Show that for the rod to remain in equilibrium $k \le \frac{2}{11}$. (7)
- a) The force at C 1the Normal' reaction. Menegore considered perpendicular to the surface (Rod).

$$A'\left(\frac{72}{9}-\mu\right) = \left(\frac{4}{5}\mu\right) \qquad \frac{40}{9} = \mu := \frac{72}{9} = \frac{9}{5}$$
d) per => $V_c\left(\frac{9}{4}\right)\lambda \Rightarrow 9\lambda = 4 \text{ (constant)}$

at B $V = \frac{4}{9}$ $V = \frac{4}{9}$

Q7